Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 15(5)2023 05 19.
Article in English | MEDLINE | ID: covidwho-20234983

ABSTRACT

COVID-19, which broke out globally in 2019, is an infectious disease caused by a novel strain of coronavirus, and its spread is highly contagious and concealed. Environmental vectors play an important role in viral infection and transmission, which brings new difficulties and challenges to disease prevention and control. In this paper, a type of differential equation model is constructed according to the spreading functions and characteristics of exposed individuals and environmental vectors during the virus infection process. In the proposed model, five compartments were considered, namely, susceptible individuals, exposed individuals, infected individuals, recovered individuals, and environmental vectors (contaminated with free virus particles). In particular, the re-positive factor was taken into account (i.e., recovered individuals who have lost sufficient immune protection may still return to the exposed class). With the basic reproduction number R0 of the model, the global stability of the disease-free equilibrium and uniform persistence of the model were completely analyzed. Furthermore, sufficient conditions for the global stability of the endemic equilibrium of the model were also given. Finally, the effective predictability of the model was tested by fitting COVID-19 data from Japan and Italy.


Subject(s)
COVID-19 , Communicable Diseases , Humans , COVID-19/epidemiology , Japan/epidemiology , Italy/epidemiology , Basic Reproduction Number
2.
Appl Math Lett ; 142: 108631, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2270016

ABSTRACT

The COVID-19 pandemic has brought a serious threat to human life safety worldwide. SARS-CoV-2 virus mainly binds to the target cell surface receptor ACE2 (Angiotensin-converting enzyme 2 ) through the S protein expressed on the surface of the virus, resulting in infection of target cells. During this infection process, the target cell ACE2 receptor plays a very important mediating role. In this paper, a delay differential equation model containing the mediated effect of target cell receptor is established according to the mechanism of SARS-CoV-2 virus invasion of target cells, and the global stability of the infection-free equilibrium and the infected equilibrium of the model is obtained by using the basic reproduction number  ℛ 0  and constructing the appropriate Lyapunov functional. The expression of the basic reproduction number  ℛ 0  intuitively gives the dependence on the expression ratio of the target cell surface ACE2 receptor, which is helpful for the understanding of the mechanism of SARS-CoV-2 virus infection.

3.
Math Biosci Eng ; 19(12): 12247-12259, 2022 08 22.
Article in English | MEDLINE | ID: covidwho-2071967

ABSTRACT

The purpose of this paper is to give some sufficient conditions for the existence of periodic oscillation of a class of in-host MERS-Cov infection model with cytotoxic T lymphocyte (CTL) immune response. A new technique is developed to obtain a lower bound of the state variable characterizing CTL immune response in the model. Our results expand on some previous works.


Subject(s)
Middle East Respiratory Syndrome Coronavirus , T-Lymphocytes, Cytotoxic , Immunity
4.
Mathematics ; 10(6):975, 2022.
Article in English | ProQuest Central | ID: covidwho-1760760

ABSTRACT

In this paper, we study the global dynamics of a delayed virus dynamics model with apoptosis and both virus-to-cell and cell-to-cell infections. When the basic reproduction number R0>1, we obtain the uniform persistence of the model, and give some explicit expressions of the ultimate upper and lower bounds of any positive solution of the model. In addition, by constructing the appropriate Lyapunov functionals, we obtain some sufficient conditions for the global attractivity of the disease-free equilibrium and the chronic infection equilibrium of the model. Our results extend existing related works.

SELECTION OF CITATIONS
SEARCH DETAIL